Add like
Add dislike
Add to saved papers

Cortical processing of location changes in a "cocktail-party" situation: Spatial oddball effects on electrophysiological correlates of auditory selective attention.

Hearing Research 2018 April 28
Neural mechanisms of selectively attending to a sound source of interest in a simulated "cocktail-party" situation, composed of multiple competing sources, were investigated using event-related potentials in combination with a spatial oddball design. Subjects either detected rare spatial deviants in a series of standard sounds or passively listened. Targets either appeared in isolation or in the presence of two distractor sound sources at different locations ("cocktail-party" condition). Deviant-minus-standard difference potentials revealed mismatch negativity, P3a, and P3b. However, mainly the P3b was modulated by spatial conditions of stimulation, with lower amplitude for "cocktail-party", than single, sounds. In the active condition, cortical source localization revealed two distinct foci of maximum differences in electrical activity for the contrast of single vs. "cocktail-party" sounds: the right inferior frontal junction and the right anterior superior parietal lobule. These areas may be specifically involved in processes associated with selective attention in a "cocktail-party" situation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app