Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Directional K + channel insertion in a single phospholipid bilayer: Neutron reflectometry and electrophysiology in the joint exploration of a model membrane functional platform.

We investigated the insertion of small potassium (K+ ) channel proteins (KcvMA-1D and KcvNTS ) into model membranes and the lipid-protein structural interference, combining neutron reflectometry and electrophysiology. Neutron reflectometry experiments showed how the transverse structure and mechanical properties of the bilayer were modified, upon insertion of the proteins in single model-membranes, either supported on solid substrate or floating. Parallel electrophysiology experiments were performed on the same channels reconstituted in free-standing planar lipid bilayers, of both typical composition and matched to the neutron reflectometry experiment, assessing their electrical features. Functional and structural results converge in detecting that the proteins, conical in shape, insert with a directionality, cytosolic side first. Our work addresses the powerful combination of the two experimental approaches. We show here that membrane structure spectroscopy and ion channel electrophysiology can become synergistic tools in the analysis of structural-functional properties of biomimetic complex environment.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app