Add like
Add dislike
Add to saved papers

Structural and biochemical characterization of the yeast HD domain containing protein YGK1 reveals a metal-dependent nucleoside 5'-monophosphatase.

HD-domain is a conserved domain, with the signature of histidine and aspartic (HD) residues doublets. HD-domain proteins may possess nucleotidase and phosphodiesterase activities, and they play important roles in signaling and nucleotide metabolism. In yeast, HD-domain proteins with nucleotidase activity remained unexplored. Here, we biochemically and structurally characterized two HD domain proteins YGK1 (YGL101W) and YB92 (YBR242W) from Saccharomyces cerevisiae as nucleoside 5'-monophosphatases, with substrate preference for deoxyribonucleoside 5'-monophosphatase over ribonucleoside 5'-monophosphatase. By determining the crystal structure of YGK1, we unveiled that YGK1 structure resembled as the crystal structure of YfbR from E. coli. Size-exclusion chromatography and crosslinking studies suggested that YGK1 and YB92 existed in the form of a dimer, respectively, which were consistent with structural observation of YGK1. Site-directed mutagenesis demonstrated that more extensive conserved residues near the divalent metal coordinating active site were essential for YGK1 activity than previous suggested. The metal coordinating His89 and Asp90, and the neighboring conserved Glu93, Glu114 and Glu145 were individually critical for catalysis. In addition, alignments suggested that three flexible loops with hydrophobic residues might be implicated in substrate selectivity to nucleoside moiety. Together, our comparative structural and mutational studies suggested that YGK1 and YB92 functioned as 5'-nucleotidases in S. cerevisiae.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app