Add like
Add dislike
Add to saved papers

Valproic acid inhibits ATP-triggered Ca 2+ release via a p38-dependent mechanism in bEND.3 endothelial cells.

Valproic acid (VA) is currently used to treat epilepsy and bipolar disorder. It has also been demonstrated to promote neuroprotection and neurogenesis. Although beneficial actions of VA on brain blood vessels have also been demonstrated, the effects of VA on brain endothelial cell (EC) Ca2+ signaling are hitherto unreported. In this report, we examined the effects of VA on agonist-triggered Ca2+ signaling in mouse cortical bEND.3 EC. While VA (100 μm) did not cause an acute inhibition of ATP-triggered Ca2+ signaling, a 30-min VA treatment strongly suppressed ATP-triggered intracellular Ca2+ release; however, such treatment did not affect Ca2+ release triggered by cyclopiazonic acid, an inhibitor of SERCA Ca2+ pump, suggesting there was no reduction in Ca2+ store size. VA-activated p38 signaling, and VA-induced inhibition of ATP-triggered Ca2+ release was prevented by SB203580, a p38 inhibitor, suggesting VA caused the inhibition by activating p38. Remarkably, VA treatment did not affect acetylcholine-triggered Ca2+ release, suggesting VA may not inhibit inositol 1,4,5-trisphosphate-induced Ca2+ release per se, and may not act directly on Gq or phospholipase C. Taken together, our results suggest VA treatment, via a p38-dependent mechanism, led to an inhibition of purinergic receptor-effector coupling.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app