Add like
Add dislike
Add to saved papers

A methodology for in silico endovascular repair of abdominal aortic aneurysms.

Endovascular aneurysm repair (EVAR) can involve some unfavorable complications such as endoleaks or stent-graft (SG) migration. Such complications, resulting from the complex mechanical interaction of vascular tissue, SG and blood flow or incompatibility of SG design and vessel geometry, are difficult to predict. Computational vascular mechanics models can be a predictive tool for the selection, sizing and placement process of SGs depending on the patient-specific vessel geometry and hence reduce the risk of potential complications after EVAR. In this contribution, we present a new in silico EVAR methodology to predict the final state of the deployed SG after intervention and evaluate the mechanical state of vessel and SG, such as contact forces and wall stresses. A novel method to account for residual strains and stresses in SGs, resulting from the precompression of stents during the assembly process of SGs, is presented. We suggest a parameter continuation approach to model various different sizes of SGs within one in silico EVAR simulation which can be a valuable tool when investigating the issue of SG oversizing. The applicability and robustness of the proposed methods are demonstrated on the example of a synthetic abdominal aortic aneurysm geometry.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app