Add like
Add dislike
Add to saved papers

IFNAR1 Controls Autocrine Type I IFN Regulation of PD-L1 Expression in Myeloid-Derived Suppressor Cells.

Tumor cells respond to IFN-γ of activated T cells to upregulate programmed death-ligand 1 (PD-L1) in the tumor microenvironment as an adaptive immune resistance mechanism. Tumor cells also express oncogene-driven PD-L1. PD-L1 is also expressed on myeloid-derived suppressor cells (MDSCs). It is known that both type I and II IFNs upregulate PD-L1 expression in MDSCs. However, the molecular mechanism underlying PD-L1 expression in MDSCs is still largely unknown. We report in this article that MDSCs exhibit constitutive STAT1 phosphorylation in vitro without exogenous IFNs, indicating a constitutive active JAK-STAT signaling pathway in mouse MDSCs in vitro. Furthermore, IFN-α and IFN-β but not IFN-γ are endogenously expressed in the MDSC cell line in vitro and in tumor-induced MDSCs in vivo. Neutralizing type I IFN or inhibiting the JAK-STAT signaling pathway significantly decreased constitutive PD-L1 expression in MDSCs in vitro. However, neither IFN-α expression level nor IFN-β expression level is correlated with PD-L1 expression level in MDSCs; instead, the level of IFN receptor type I (IFNAR1) is correlated with PD-L1 expression levels in MDSCs. Consequently, knocking out IFNAR1 in mice diminished PD-L1 expression in tumor-induced MDSCs. Therefore, we determined that 1) PD-L1 expression in MDSCs is activated by type I IFN through an autocrine manner and 2) the expression level of PD-L1 is controlled at least in part by the IFNAR1 level on MDSCs. Our data indicate that MDSCs may maintain their PD-L1 expression via autocrine type I IFN to exert their suppressive activity in the absence of IFN-γ from the suppressed T cells in the tumor microenvironment.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app