JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

A comprehensive study of calcific aortic stenosis: from rabbit to human samples.

The global incidence of calcific aortic stenosis (CAS) is increasing owing, in part, to a growing elderly population. The condition poses a great challenge to public health, because of the multiple comorbidities of these older patients. Using a rabbit model of CAS, we sought to characterize protein alterations associated with calcified valve tissue that can be ultimately measured in plasma as non-invasive biomarkers of CAS. Aortic valves from healthy and mild stenotic rabbits were analyzed by two-dimensional difference gel electrophoresis, and selected reaction monitoring was used to directly measure the differentially expressed proteins in plasma from the same rabbits to corroborate their potential as diagnostic indicators. Similar analyses were performed in plasma from human subjects, to examine the suitability of these diagnostic indicators for transfer to the clinical setting. Eight proteins were found to be differentially expressed in CAS tissue, but only three were also altered in plasma samples from rabbits and humans: transitional endoplasmic reticulum ATPase, tropomyosin α-1 chain and L-lactate dehydrogenase B chain. Results of receiver operating characteristic curves showed the discriminative power of the scores, which increased when the three proteins were analyzed as a panel. Our study shows that a molecular panel comprising three proteins related to osteoblastic differentiation could have utility as a serum CAS indicator and/or therapeutic target.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app