Add like
Add dislike
Add to saved papers

Fabrication of hyaluronidase-responsive biocompatible multilayers on BMP2 loaded titanium nanotube for the bacterial infection prevention.

Infection associated with orthopedic implants is the chief cause of implant failure. An important consideration to prevent the infection at implants is to inhibit the biofilm formation for the initial 6 h. Therefore, we fabricated hyaluronidase-sensitive multilayers of chitosan (Chi)/sodium hyaluronate-lauric acid (SL) onto the surface of bone morphogenetic protein 2 (BMP2) loaded titanium nanotube (TNT) via spin-assisted layer-by-layer technique. The results of both Fourier transform infrared spectroscopy (FTIR) and nuclear magnetic resonance (1 H NMR) confirmed the successful synthesis of SL. The multilayer structure on BMP2 loaded TNT was characterized by field-emission scanning electron microscopy (FE-SEM), atomic force microscopy (AFM) and water contact angle, respectively. The release profiles confirmed that hyaluronidase could trigger the release of lauric acid (LA) from the SL multilayer and accelerate the release of BMP2 in the system. The hyaluronidase-sensitive-multilayer-coated BMP2-loaded TNT (TNT/BMP2/(Chi/SL/Chi/Gel)4 ) not only demonstrated good antibacterial capability, but also showed good biocompatibility in in vitro usage, which was supported by the efficient growth inhibition of both Staphylococcus aureus and Escherichia coli, as well as higher cell viability, alkaline phosphatase activity, mineralization capability, and higher gene expression of osteoblasts on TNT/BMP2/(Chi/SL/Chi/Gel)4 . This study developed an alternative approach to fabricate effective antibacterial implants for orthopedic implantation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app