Add like
Add dislike
Add to saved papers

Down-Regulation of miR-218-5p Promotes Apoptosis of Human Umbilical Vein Endothelial Cells Through Regulating High-Mobility Group Box-1 in Henoch-Schonlein Purpura.

BACKGROUND: Apoptosis of human umbilical vein endothelial cells (HUVECs) plays an important role in the progression of Henoch-Schonlein purpura (HSP). In the present study, we explored the function of miR-218-5p in HUVEC apoptosis and HSP development.

MATERIALS AND METHODS: HSP rat model was established and peripheral blood mononuclear cells (PBMC) were isolated. The expression of miR-218-5p and high-mobility group box-1 (HMGB1) protein in HUVECs was determined by quantitative real-time polymerase chain reaction and western blot, respectively. Cell apoptosis was detected by terminal deoxynucleotidyl transferase dUTP nick end labeling assay. The association between miR-218-5p and HMGB1 was determined by luciferase assay. The endogenous expression of related genes was modulated with recombinant plasmids and cell transfection.

RESULTS: MiR-218-5p was down-regulated and HMGB1 was up-regulated in vessels of the lower limb of HSP rats and in HUVECs co-cultured in HSP PBMC supernatant. MiR-218-5p negatively regulated HMGB1 by targeting its 3'-untranslated regions. Over expression of miR-218-5p reversed the increased apoptosis and HMGB1 expression observed in HUVECs co-cultured in PBMC supernatant, whereas miR-218-5p knockdown showed the opposite outcomes. Furthermore, the miR-218-5p mimic demonstrated an inhibitory effect on the apoptosis of HUVECs co-cultured in PBMC supernatant, which was reversed by over expression of HMGB1. In HSP rats, over expression of miR-218-5p attenuated HSP and decreased the level of HMGB1.

CONCLUSIONS: MiR-218-5p attenuated HSP at least partly through regulating HMGB1 expression and affecting the function of HUVECs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app