Add like
Add dislike
Add to saved papers

Dynamics of dengue disease with human and vector mobility.

Dengue is a vector borne disease transmitted to humans by Aedes aegypti mosquitoes carrying virus of different serotypes. Dengue exhibits complex spatial and temporal dynamics, influenced by various biological, human and environmental factors. In this work, we study the dengue spread for a single serotype (DENV-1) including statistical models of human mobility with exponential step length distribution, by using reaction-diffusion equations and Stochastic Cellular Automata (SCA) approach. We analyze the spatial and temporal spreading of the disease using parameters from field studies. We choose mosquito density data from Ahmedabad city as a proxy for climate data in our SCA model. We find an interesting result that although human mobility makes the infection spread faster, there is an apparent early suppression of the epidemic compared to immobile humans. The disease extinction time is lesser when human mobility is included.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app