Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

A Wolbachia triple-strain infection generates self-incompatibility in Aedes albopictus and transmission instability in Aedes aegypti.

BACKGROUND: Artificially-introduced transinfections of the intracellular bacterium Wolbachia pipientis have the potential to reduce the vectorial capacity of mosquito populations for viruses such as dengue and chikungunya. Aedes albopictus has two native strains of Wolbachia, but their replacement with the non-native wMel strain blocks transmission of both viruses. The pattern of cytoplasmic incompatiiblity generated by wMel with wild-types is bidirectional. Novel-plus-native-strain co-infection is predicted to lead to a more efficient population spread capacity; from a bi-directional to a uni-directional cytoplasmic incompatibility (CI) model.

RESULTS: A novel-plus-native-strain triple-infection in Ae. albopictus (wAlbAwAlbBwMel) was generated. Although triple-infected females were fully reproductively viable with uninfected males, they displayed self-incompatibility. qPCR of specific strains in dissected tissues suggested that this may be due to the displacement of one of the native strains (wAlbA) from the ovaries of triple-infected females. When the triple strain infection was transferred into Aedes aegypti it displayed an unexpectedly low level of transmission fidelity of the three strains in this species.

CONCLUSIONS: These results suggest that combining Wolbachia strains can lead to co-infection interactions that can affect outcomes of CI and maternal transmission.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app