Journal Article
Review
Add like
Add dislike
Add to saved papers

Magnetoresistance Effect and the Applications for Organic Spin Valves Using Molecular Spacers.

Materials 2018 May 4
Organic spin devices utilizing the properties of both spin and charge inherent in electrons have attracted extensive research interest in the field of future electronic device development. In the last decade, magnetoresistance effects, including giant magetoresistance and tunneling magnetoresistance, have been observed in organic spintronics. Significant progress has been made in understanding spin-dependent transport phenomena, such as spin injection or tunneling, manipulation, and detection in organic spintronics. However, to date, materials that are effective for preparing organic spin devices for commercial applications are still lacking. In this report, we introduce basic knowledge of the fabrication and evaluation of organic spin devices, and review some remarkable applications for organic spin valves using molecular spacers. The current bottlenecks that hinder further enhancement for the performance of organic spin devices is also discussed. This report presents some research ideas for designing organic spin devices operated at room temperature.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app