Add like
Add dislike
Add to saved papers

Biosensor-based selective detection of Zika virus specific antibodies in infected individuals.

Zika virus (ZIKV) recently emerged as a global threat subsequent to its global spread because it induces microencephaly and other brain damages in infants born to infected mothers. Epidemiological monitoring of infection has been hampered by the absence of reliable serological tests capable to distinguish between ZIKV and other Flavivirus infections, in particular Dengue virus (DENV). As both viruses are transmitted by the same mosquito-species, their distributions largely overlap and reliable serological distinction between the viruses is essential. Here we develop a novel biosensor which is based on recombinant forms of ZIKV non-structural protein 1 (NS1) and the domain III of the envelope protein (EDIII). Using electrochemical impedance spectroscopy (EIS) and square wave voltammetry (SWV), we demonstrate that in addition to extremely sensitive detection of ZIKV-specific antibodies in serum and saliva, the biosensor promptly distinguished ZIKV and DENV-specific antibodies. Hence, this novel biosensor allows assessing ZIKV antibodies in blood and saliva and results are unaffected by presence of DENV virus-specific antibodies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app