Add like
Add dislike
Add to saved papers

Markerless gene knockout and integration to express heterologous biosynthetic gene clusters in Pseudomonas putida.

Pseudomonas putida has gained much interest among metabolic engineers as a workhorse for producing valuable natural products. While a few gene knockout tools for P. putida have been reported, integration of heterologous genes into the chromosome of P. putida, an essential strategy to develop stable industrial strains producing heterologous bioproducts, requires development of a more efficient method. Current methods rely on time-consuming homologous recombination techniques and transposon-mediated random insertions. Here we report a RecET recombineering system for markerless integration of heterologous genes into the P. putida chromosome. The efficiency and capacity of the recombineering system were first demonstrated by knocking out various genetic loci on the P. putida chromosome with knockout lengths widely spanning 0.6-101.7 kb. The RecET recombineering system developed here allowed successful integration of biosynthetic gene clusters for four proof-of-concept bioproducts, including protein, polyketide, isoprenoid, and amino acid derivative, into the target genetic locus of P. putida chromosome. The markerless recombineering system was completed by combining Cre/lox system and developing efficient plasmid curing systems, generating final strains free of antibiotic markers and plasmids. This markerless recombineering system for efficient gene knockout and integration will expedite metabolic engineering of P. putida, a bacterial host strain of increasing academic and industrial interest.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app