Add like
Add dislike
Add to saved papers

Accelerated wound healing by injectable star poly(ethylene glycol)-b-poly(propylene sulfide) scaffolds loaded with poorly water-soluble drugs.

Injectable hydrogel matrices take the shape of a wound cavity and serve as scaffold for tissue repair and regeneration. Yet these materials are generally hydrophilic, limiting the incorporation of poorly water soluble, hydrophobic drugs. Here we show this shortcoming is circumvented through a star-shaped amphiphilic block copolymer comprising poly(ethylene glycol) and poly (propylene sulfide). This star-shaped amphiphilic polymer self-assembles in an aqueous medium into a physically stable hydrogel and effectively dissolves hydrophobic molecules delivering them at therapeutic doses. The self assembled hydrogel is a robust three-dimensional scaffold in vivo effectively promoting cellular infiltration, reducing inflammation, and wound clsoure. When combined with a hydrophobic BRAF inhibitor that promotes paradoxical mitogen-activated protein kinase (MAPK) activation in keratinocytes and wound closure, our self assembled scaffold supported dermal wound closure at a reduced drug dosage compared to administering the drug in dimethyl sulfoxide (DMSO) without a polymeric matrix. This family of star-shaped amphiphilic polymers delivers poorly water soluble active agents at a fraction of generally required dosage for efficacy and supports three-dimensional cell growth at tissue wounds, showing great promise for novel uses of hydrophobic drugs in tissue repair applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app