Add like
Add dislike
Add to saved papers

LRP1 Suppresses Bone Resorption in Mice by Inhibiting the RANKL-Stimulated NF-κB and p38 Pathways During Osteoclastogenesis.

Single-nucleotide polymorphisms in the LRP1 gene coding sequence are associated with low bone mass, and cell culture studies suggest that LRP1 plays a role in osteoblast proliferation and osteoblast-mediated osteoclastogenesis. However, the in vivo function of LRP1 in bone homeostasis has not been explored. In this work, we studied the osteoclast-specific role of LRP1 in bone homeostasis using a Ctsk-Cre;Lrp1f/f mouse model on the C57BL/6J background. These mice had a dramatically decreased trabecular bone mass with markedly more osteoclasts, while the osteoblast activity was unaffected or slightly increased. The cortical bone parameters were largely unaltered. Upon RANKL treatment, Lrp1-deficient bone marrow monocytes more efficiently differentiated into osteoclasts and showed elevated p65 NFκB and p38 signaling. Consistently, Lrp1-overexpressing Raw264.7 cells were desensitized to RANKL-induced p38 and p65 activation and osteoclastogenesis. Moreover, RANKL treatment led to a sharp decrease of LRP1 protein and RNA in BMMs. Overall, our data suggest that osteoclast-expressed LRP1 is a crucial regulator of bone mass. It inhibits the NFκB and p38 pathways and lessens the efficiency of RANKL-induced osteoclastogenesis. © 2018 American Society for Bone and Mineral Research.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app