Add like
Add dislike
Add to saved papers

The upregulation of TMPRSS4, partly ascribed to the downregulation of miR‑125a‑5p, promotes the growth of human lung adenocarcinoma via the NF‑κB signaling pathway.

In this study, with the aid of microarray technology, transmembrane protease serine 4 (TMPRSS4), a novel member of the serine protease family, was found to be upregulated in the majority of lung adenocarcinoma (LUAD) tissues compared to normal lung tissues. Of note, the clinical significance of TMPRSS4 in LUAD has not yet been reported, at least to the best of our knowledge. Through immunohistochemistry assays, we found that TMPRSS4 was overexpressed in LUAD tissues and that the TMPRSS4 expression level was also proportionally associated with the AJCC clinical stage, T stage and pathological grade. Moreover, a high expression of TMPRSS4 was found to be associated with adverse outcomes and was a significant independent factors predicting a poor prognosis. To elucidate the possible mechanisms responsible for the overexpression of TMPRSS4, we examined at microRNAs (miRNAs or miRs), which are small non‑coding RNAs commonly dysregulated in human malignancies and are known to promote carcinogenesis by interacting with other types of RNAs. By means of bioinformatics analysis, a miRNA potentially targeting TMPRSS4 mRNA, namely miR‑125a‑5p, was selected. Dual luciferase reporter gene assays were then performed to verify the interaction. The results of MTT assays and apoptotic assays revealed that miR‑125a‑5p significantly inhibited cell growth and enhanced apoptosis, and the silencing of TMPRSS4 had similar effects. Furthermore, we observed that either the overexpression of miR‑125a‑5p or the silencing of TMPRSS4 prevented the activation of the nuclear factor (NF)-κB signaling pathway. On the whole, our findings illustrate that TMPRSS4 may be a candidate oncogene and may thus serve as a prognostic biomarker for LUAD, and its overexpression may be partly ascribed to the downregulation of miR‑125a‑5p. The dysregulation of miR‑125a‑5p and TMPRSS4 affect the biological function of LUAD cells via the NF‑κB signaling pathway. The miR‑125a‑5p/TMPRSS4/NF‑κB axis may thus provide novel insight into the pathogenic mechanisms of LUAD and may be used in the development of novel treatment strategies for LUAD.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app