Add like
Add dislike
Add to saved papers

Downregulation of microRNA‑34a inhibits oxidized low‑density lipoprotein‑induced apoptosis and oxidative stress in human umbilical vein endothelial cells.

Oxidized low‑density lipoprotein (ox‑LDL) promotes endothelial cell dysfunction, which is a primary risk factor for the development of atherosclerosis. A previous study reported that microRNA (miRNA/miR)‑34a is upregulated in atherosclerotic samples. However, its function and underlying mechanisms remain to be fully elucidated. In the present study, miRNA microarray analysis was performed to investigate the miRNA expression profile in atherosclerotic plaque tissues and examine the role of miR‑34a in ox‑LDL‑induced apoptosis of human umbilical vein endothelial cells (HUVECs). Cell viability, apoptosis and protein expression was determined by a cell counting kit‑8 assay, flow cytometry and western blot analysis, respectively. It was observed that miR‑34a was upregulated in atherosclerotic plaque tissues and that ox‑LDL treatment significantly increased the levels of miR‑34a in a dose‑dependent manner in the HUVECs. The knockdown of miR‑34a increased the protein expression of B‑cell lymphoma 2 (Bcl‑2) and cell viability, improved mitochondrial membrane potential, and decreased the activity of caspase‑3, number of apoptotic cells and release of cytochrome c from mitochondria in the ox‑LDL‑treated HUVECs. The results also demonstrated that the knockdown of miR‑34a suppressed the levels of ox‑LDL‑induced reactive oxygen species (ROS) in HUVECs. Additionally, it was found that Bcl‑2 was a target of miR‑34a in HUVECs, and that silencing Bcl‑2 abrogated the protective effects of the downregulation of miR‑34a on ox‑LDL‑induced apoptosis. These data indicated that the knockdown of miR‑34a protected against ox‑LDL apoptosis and ROS in HUVECs via inhibiting the mitochondrial apoptotic pathway, suggesting it may offer potential as a biomarker in the clinical diagnosis and as a target for the treatment of atherosclerosis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app