Add like
Add dislike
Add to saved papers

ClC-3 chloride channel protein induces G1 arrest in hepatocellular carcinoma Hep3B cells.

ClC-3 is a type of chloride channel that has multiple functions in tumorigenesis and tumor growth, and can be blocked by DIDS (4,4'-diisothiocyanostilbene-2,2'-disulfonic acid). In the present study, we found that DIDS inhibited the proliferation of Hep3B hepatocellular carcinoma (HCC) cells in a concentration-dependent manner. More in-depth research demonstrated that DIDS downregulated the protein expression levels of cyclin D1 and cyclin E, which are key proteins of the G1 phase. Additionally, we found that ClC-3 siRNA transfection induced G1 arrest in the Hep3B cells, confirming that ClC-3 is involved in the DIDS-induced inhibition of Hep3B cells. Moreover, the level of α-fetoprotein (AFP), a negative prognostic indicator of HCC, was decreased after treatment with DIDS and ClC-3 siRNA. In conclusion, we demonstrated that ClC-3 can arrest the cell cycle at the G1 phase to inhibit cell proliferation, suggesting that ClC-3 has the potential to be a novel target for HCC therapy and potentially improve the prognosis of HCC patients.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app