Add like
Add dislike
Add to saved papers

Dextran‑coated superparamagnetic iron oxide nanoparticles activate the MAPK pathway in human primary monocyte cells.

With the increase in applications of superparamagnetic iron oxide nanoparticles (SPIONs) in biomedicine, it is essential to investigate the bio‑security of these nanoparticles, especially with respect to the human immune system. In the present study, the biological effects of dextran‑coated superparamagnetic iron oxide nanoparticles (Dex‑SPIONs) on human primary monocyte cells were evaluated. The results of the present study demonstrated that Dex‑SPIONs can be identified in phagosomes or freed in the cytoplasm and did not affect cell viability or induce apoptosis. Notably, there were certain bulky vacuoles and a number of pseudopodia from the cell membrane, suggesting potential activation of human monocyte cells. In addition, the expression levels of pro‑inflammatory cytokines interleukin (IL)‑1β and tumor necrosis factor (TNF)‑α were also increased following treatment with Dex‑SPIONs. Simultaneously, the phosphorylation levels of mitogen‑activated protein kinase (MAPK) p38, c‑Jun N‑terminal kinase 1 and extracellular signal regulated kinase were markedly enhanced following nanoparticle exposure and MAPK inhibitors could abate the production of IL‑1β and TNF‑α. The results of the present study demonstrated that Dex‑SPIONs could activate human monocyte cells and that activation of MAPK pathway may be involved in these effects.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app