Add like
Add dislike
Add to saved papers

Differential mRNA expression of neuroinflammatory modulators in the spinal cord and thalamus of type 2 diabetic monkeys.

Journal of Diabetes 2018 November
BACKGROUND: Given that diabetes-associated complications are closely associated with neuroinflammation, it is imperative to study potential changes in neuroinflammatory modulators in the central nervous system of diabetic primates.

METHODS: The mRNA levels of pro- and anti-inflammatory cytokines, toll-like receptors (TLRs), growth factors, and cannabinoid receptors were compared in the spinal dorsal horn (SDH) and thalamus of naturally occurring type 2 diabetic monkeys and an age-matched control group using reverse transcription and quantitative real-time polymerase chain reaction.

RESULTS: In the SDH of diabetic monkeys, mRNA levels of proinflammatory cytokines (i.e. interleukin [IL]-1β and tumor necrosis factor [TNF] α), TLR1, and TLR2 were increased, whereas mRNA levels of IL-10, an anti-inflammatory cytokine, were decreased. No changes were observed in the mRNA levels of growth factors and cannabinoid receptors. In line with the mRNA data, TNFα immunoreactivity was significantly increased in diabetic monkeys. Moreover, mRNA expression levels of IL-1β, TNFα, TLR1, and TLR2 in the SDH were positively correlated with plasma glucose concentrations in all monkeys.

CONCLUSIONS: Several ligands and receptors involved in neuroinflammation are simultaneously dysregulated in the spinal cord of diabetic monkeys. This primate disease model will facilitate the design of novel treatment approaches to ameliorate neuroinflammation-driven adverse effects in diabetic patients.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app