JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Double-sided 3D printing on paper towards mass production of three-dimensional paper-based microfluidic analytical devices (3D-μPADs).

Lab on a Chip 2018 May 30
Recently, much effort has been focused on developing three-dimensional, paper-based microfluidic analytical devices (3D-μPADs) targeting in vitro diagnostics. However, 3D-μPAD fabrication typically requires tedious assembly that hinders mass production. Here, we report on a fabrication method for 3D-μPADs made of plastics without the need for additional assembly. Both sides of the paper were printed via liquid resin photopolymerization using a digital light processing (DLP) printer. The sample reservoir and detection zones are located on the top of the 3D-μPADs, and three microchannels are located on the bottom. The detection limits for glucose, cholesterol, and triglyceride (TG) in phosphate-buffered saline (PBS) were 0.3 mM, 0.2 mM, and 0.3 mM, respectively. The detectable ranges of glucose, cholesterol, and TG in human serum were 5-11 mM, 2.6-6.7 mM, and 1-2.3 mM. These results suggest that our fabrication method is suitable to mass produce 3D-μPADs with relative ease using simple fabrication processes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app