Add like
Add dislike
Add to saved papers

L-proline mixed with sodium benzoate as sustainable inhibitor for mild steel corrosion in 1M HCl: An experimental and theoretical approach.

Scientific Reports 2018 May 11
Following standard experimental (gravimetric measurements, potentiodynamic polarization measurements, electrochemical impedance measurements, spectroscopic measurements, scanning electron microscopy technique) and theoretical (DFT) approach, inhibition effect of L-proline (LPr) and LPr mixed with sodium benzoate (LPr + NaBenz) for mild steel (MS) corrosion in 1M HCl was studied at 30, 40, 50 and 60 °C. The concentration of LPr was varied between 100-600 ppm, whereas that of NaBenz was fixed at 10 ppm. LPr lowered the corrosion rates of MS to a considerable extent. Corrosion mitigating efficacy of LPr is synergistically enhanced on adding NaBenz at all concentrations. Evaluation of polarization parameters suggested that both LPr and LPr + NaBenz act as mixed type inhibitor with more control on cathodic reaction whereas impedance parameters suggested inhibition of metal corrosion by adsorption at the MS/solution interface. Surface microscopic examination of corroded and uncorroded MS coupons supported the protective effect of adsorbed inhibitor layer at the MS surface. Spectroscopic studies are suggestive of the complex formation between inhibitor molecules and the metal. When LPr is combined with NaBenz, the corrosion inhibition rate was improved greatly. Corrosion mitigating efficacy of LPr or LPr mixed with NaBenz obtained by different techniques are in good agreement and correlate well with theoretical quantum chemical descriptors.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app