Add like
Add dislike
Add to saved papers

Network recovery based on system crash early warning in a cascading failure model.

Scientific Reports 2018 May 11
This paper investigates the possibility of saving a network that is predicted to have a cascading failure that will eventually lead to a total collapse. We model cascading failures using the recently proposed KQ model. Then predict an impending total collapse by monitoring critical slowing down indicators and subsequently attempt to prevent the total collapse of the network by adding new nodes. To this end, we systematically evaluate five node addition rules, the effect of intervention delay and network degree heterogeneity. Surprisingly, unlike for random homogeneous networks, we find that a delayed intervention is preferred for saving scale free networks. We also find that for homogeneous networks, the best strategy is to wire newly added nodes to existing nodes in a uniformly random manner. For heterogeneous networks, however, a random selection of nodes based on their degree mostly outperforms a uniform random selection. These results provide new insights into restoring networks by adding nodes after observing early warnings of an impending complete breakdown.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app