Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Asymmetric nucleophilic fluorination under hydrogen bonding phase-transfer catalysis.

Science 2018 May 12
Common anionic nucleophiles such as those derived from inorganic salts have not been used for enantioselective catalysis because of their insolubility. Here, we report that merging hydrogen bonding and phase-transfer catalysis provides an effective mode of activation for nucleophiles that are insoluble in organic solvents. This catalytic manifold relies on hydrogen bonding complexation to render nucleophiles soluble and reactive, while simultaneously inducing asymmetry in the ensuing transformation. We demonstrate the concept using a chiral bis-urea catalyst to form a tridentate hydrogen bonding complex with fluoride from its cesium salt, thereby enabling highly efficient enantioselective ring opening of episulfonium ion. This fluorination method is synthetically valuable considering the scarcity of alternative protocols and points the way to wider application of the catalytic approach with diverse anionic nucleophiles.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app