Journal Article
Research Support, N.I.H., Extramural
Research Support, N.I.H., Intramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Novel Fluoroindenoisoquinoline Non-Camptothecin Topoisomerase I Inhibitors.

Contrary to other anticancer targets, topoisomerase I (TOP1) is targeted by only one chemical class of FDA-approved drugs: topotecan and irinotecan, the derivatives of the plant alkaloid, camptothecin. The indenoisoquinolines LMP400, LMP744, and LMP776 are novel noncamptothecin TOP1 inhibitors in clinical trial, which overcome the limitations of camptothecins. To further improve metabolic stability, their methoxy groups have been replaced by fluorine, as in the fluoroindenoisoquinolines NSC 781517 (LMP517), NSC 779135 (LMP135), and NSC 779134 (LMP134). We tested the induction and stability of TOP1 cleavage complexes (TOP1cc), and the induction and persistence of DNA damage measured by histone H2AX phosphorylation (γH2AX) compared with their parent compounds LMP744 and LMP776 in leukemia CCRF-CEM and colon carcinoma HCT116 cells. The fluoroindenoisoquinolines induced TOP1cc and γH2AX at nanomolar concentrations, and at higher levels than the parent indenoisoquinolines. The fluoroindenoisoquinoline LMP135 showed greater antitumor activity than topotecan in small-cell lung cancer cell H82 xenografts. It was also more potent than topotecan in the NCI-60 cancer cell line panel. Bioinformatics tools (https://discover.nci.nih.gov/cellminercdb) were used to investigate the following: (i) the correlations of fluoroindenoisoquinolines activity with other drugs, and (ii) genomic determinants of response in the NCI-60. The activity of the fluoroindenoisoquinolines was mostly correlated with camptothecin derivatives and the parent indenoisoquinolines, consistent with TOP1 targeting. Genomic analyses and activity assays in CCRF-CEM SLFN11 -deleted cells showed that SLFN11 expression is a dominant determinant of response to LMP135. This study shows the potential value of the fluoroindenoisoquinolines for further development as novel anticancer agents targeting TOP1. Mol Cancer Ther; 17(8); 1694-704. ©2018 AACR .

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app