Add like
Add dislike
Add to saved papers

A Qualitative and Quantitative Correlation Study of Lumbar Intervertebral Disc Degeneration Using Glycosaminoglycan Chemical Exchange Saturation Transfer, Pfirrmann Grade, and T1-ρ.

BACKGROUND AND PURPOSE: Glycosaminoglycan chemical exchange saturation transfer (gagCEST) imaging allows the direct measurement and mapping of glycosaminoglycans. In this study, we aimed to evaluate the usefulness of gagCEST imaging in the quantitative assessment of intervertebral disc degeneration in a comparison with Pfirrmann grade and T1-ρ measurements.

MATERIALS AND METHODS: Ninety-six lumbar intervertebral discs in 24 volunteers (36.0 ± 8.5 years of age, 21 men and 3 women) were examined with both gagCEST imaging and T1-ρ measurements. The gagCEST imaging was performed at 3T with a saturation pulse with 1.0-second duration and the B1 amplitude of 0.8 μT followed by imaging by a 2D fast spin-echo sequence. The Z-spectra were obtained at 25 frequency offsets from -3 to +3 ppm (step, 0.25 ppm). A point-by-point B0 correction was performed with a B0 map. The gagCEST signal and T1-ρ values were measured in the nucleus pulposus in each intervertebral disc. The Pfirrmann grades were assessed on T2-weighted images.

RESULTS: The gagCEST signal at grade I (5.36% ± 2.79%) was significantly higher than those at Pfirrmann grade II (3.15% ± 1.40%, P = .0006), grade III (0.14% ± 1.03%, P < .0001), grade IV (-1.75% ± 2.82%, P < .0001), and grade V (-1.47% ± 0.36%, P < .0001). The gagCEST signal at grade II was significantly higher than those of grade III ( P < .0001), grade IV ( P < .0001), and grade V ( P < .0001). The gagCEST signal was significantly correlated negatively with Pfirrmann grade ( P < .0001) and positively correlated with T1-ρ ( P < .0001).

CONCLUSIONS: GagCEST imaging could be a reliable and quantitative technique for assessing intervertebral disc degeneration.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app