Add like
Add dislike
Add to saved papers

Congenital Disorders of Ganglioside Biosynthesis.

Gangliosides are expressed on all vertebrate cells and tissues, but are particularly abundant in the mammalian brain, where they constitute major cell-surface determinants on all nerve cells. The same four ganglioside structures, GM1, GD1a, GD1b, and GT1b, constitute the great majority of brain gangliosides in all mammals. Biosynthesis of these major brain gangliosides starts with addition of glucose to the ceramide lipid carrier followed by stepwise addition of up to six additional monosaccharides. This primarily involves the sequential action of seven glycosyltransferases, many of which appear to act specifically on glycolipid (rather than glycoprotein) acceptors. Congenital human disorders of ganglioside biosynthesis are exceedingly rare, but provide a glimpse into the functions of these major nerve cell surface components. To date, less than 100 individuals from 36 family pedigrees have been confirmed to carry deleterious mutations in ganglioside biosynthetic genes. Mutations in ST3GAL5 (coding GM3 synthase) were discovered as the basis for severe congenital infantile seizures, whereas mutations in B4GALNT1 (coding GM2/GD2 synthase) are the basis of hereditary spastic paraplegia accompanied by intellectual disability. In this review, we compile and summarize the findings of these studies, compare human disorders with mouse genetic models, and reflect on the implications for understanding ganglioside function and dysfunction in the nervous system.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app