Add like
Add dislike
Add to saved papers

Gangliosides in Cancer Cell Signaling.

At the outer leaflet of the plasma membrane, gangliosides are found with other glycosphingolipids, phospholipids, and cholesterol in glycolipid-enriched microdomains, in which they interact with signaling molecules including receptor tyrosine kinases and signal transducers. The role of gangliosides in the regulation of signal transduction has been reported for many cases and in different cell types. The biosynthesis of gangliosides involves specific enzymes, mainly glycosyltransferases that control together with glycohydrolases, the steady state of gangliosides at the cell surface. Changes in ganglioside composition are therefore correlated with modifications of glycosyltransferases or glycohydrolases expression and result in the deregulation of cellular signals. In several types of cancers, the overexpression of disialogangliosides, such as GD3 or GD2 mainly results in the activation of cell signaling, increasing cell proliferation and migration, as well as tumor growth. In this chapter, we summarize our current knowledge of ganglioside biosynthesis, degradation, and of their role in cell signaling regulation in cancers.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app