Add like
Add dislike
Add to saved papers

Biological and Pathological Roles of Ganglioside Sialidases.

Sialidases are glycosidases responsible for the removal of α-glycosidically linked sialic acid residues from carbohydrate portions of glycoproteins and glycolipids, this process being the initial step in the degradation of such glycoconjugates. Sialic acids are considered to play important roles in various biological processes largely in two ways, one related to their hydrophilic and acidic properties exerting physicochemical effects on the glycoconjugates to which they are attached, and the other as recognition sites or in an opposing fashion as masking sites. The removal of sialic acids catalyzed by a sialidase, therefore greatly influences many biological processes through changing the conformation of glycoproteins and through recognition and masking of biological sites of functional molecules. Sialidases are found widely distributed in metazoan animals, from echinoderms to mammals, and are also present in viruses and other microorganisms, including fungi, protozoa, and bacteria even mostly lacking sialic acids. In mammals, there are four forms of sialidase (Neu1, Neu2, Neu3, and Neu4), differing in their major subcellular localization and enzymatic properties. They have been implicated in regulation of various cellular activities, such as cell differentiation, cell growth, and cell adhesion and motility, depending on their particular properties. In contrast, in microorganisms the enzymes appear to play roles limited to nutrition and pathogenesis. In this chapter, the focus is on mammalian sialidases preferentially hydrolyzing gangliosides, mostly Neu3 and Neu4, with an attempt to provide a brief overview of their physiological and pathological roles.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app