Add like
Add dislike
Add to saved papers

Sex-related differences in the thanatomicrobiome in postmortem heart samples using bacterial gene regions V1-2 and V4.

Recent studies have revealed distinct thanatomicrobiome (microbiome of death) signatures in human body sites after death. Thanatomicrobiome studies suggest that microbial succession after death may have the potential to reveal important postmortem biomarkers for the identification of time of death. We surveyed the postmortem microbiomes of cardiac tissues from 10 corpses with varying times of death (6-58 h) using amplicon-based sequencing of the 16S rRNA gene' V1-2 and V4 hypervariable regions. The results demonstrated that amplicons had statistically significant (P < 0·05) sex-dependent changes. Clostridium sp., Pseudomonas sp., Pantoea sp. and Streptococcus sp. had the highest enrichment for both V1-2 and V4 regions. Interestingly, the results also show that V4 amplicons had higher abundance of Clostridium sp. and Pseudomonas sp. in female hearts compared to males. In addition, Streptococcus sp. was solely found in male heart samples. The distinction between sexes was further supported by principle coordinate analysis, which revealed microbes in female hearts formed a distinctive cluster separate from male cadavers for both hypervariable regions. This study provides data that demonstrates that two hypervariable regions show discriminatory power for sex differences in postmortem heart samples.

SIGNIFICANCE AND IMPACT OF THE STUDY: The findings represent preliminary data of the first thanatomicrobiome investigation of a comparison between 16S rRNA gene V1-2 and V4 amplicon signatures in corpse heart tissues. The results demonstrated that V4 hypervariable region amplicons had statistically significant (P < 0·05) sex-dependent microbial diversity. For example, Streptococcus sp. was solely found in male postmortem heart tissues. Interestingly, the results also show that V4 amplicons had higher abundance of Clostridium sp. and Pseudomonas sp. in female heart tissues compared to males. The finding of Clostridium sp. supports the postmortem clostridium effect in corpse heart tissues.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app