Add like
Add dislike
Add to saved papers

The osteogenic, inflammatory and osteo-immunomodulatory performances of biomedical Ti-Ta metal-metal composite with Ca- and Si-containing bioceramic coatings.

It is known that good mechanical properties, low modulus to reduce stress-shielding effect, favorable osteogenic activity and limited inflammatory response are critical factors for orthopedic implants to induce excellent osteointegration. In this study, Ti-20% Ta metal-metal composite (referred as Ti-Ta) which consisted of Ti- and Ta-rich phases was fabricated via the strategy of powder metallurgy. Micro-arc oxidation (MAO) was employed to modify the surface of Ti-Ta composite. The surfaces of Ti-Ta composite after MAO treatment at an applied voltage of 250 (referred as MAO-250 V) or 300 V (referred as MAO-300 V) exhibited three distinct zones with significantly different morphological features and surface chemistry. Osteoblast-like SaOS-2 cells were found to be preferential to attach on the Ta-rich phase and its surrounding areas, exhibiting an area-dependent adhesion tendency. However, the attachment of Raw 264.7 macrophages was found to be insensitive to the surface characteristics. The proliferation and differentiation of SaOS-2 cells cultured on various surfaces basically followed the trend: MAO-modified surfaces > Ti-Ta surface > Ti surface. The Ti-Ta and MAO-modified surfaces were found to inhibit the inflammatory response and polarize macrophages to anti-inflammatory M2 phenotype compared to Ti surface. Moreover, the microenvironments created by Ti-Ta, MAO-250 V and MAO-300 V/macrophage interactions promoted the proliferation and differentiation of SaOS-2 cells compared to that created by Ti/macrophage interactions. MAO-300 V surface exhibited further enhanced positive osteo-immunomodulatory effects compared to Ti-Ta surface. Together, the Ti-20% Ta metal-metal composite modified by MAO at an applied voltage of 300 V is considered as a promising implant material for orthopedic applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app