Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Direct Photolithography on Molecular Crystals for High Performance Organic Optoelectronic Devices.

Organic crystals are generated via the bottom-up self-assembly of molecular building blocks which are held together through weak noncovalent interactions. Although they revealed extraordinary charge transport characteristics, their labile nature represents a major drawback toward their integration in optoelectronic devices when the use of sophisticated patterning techniques is required. Here we have devised a radically new method to enable the use of photolithography directly on molecular crystals, with a spatial resolution below 300 nm, thereby allowing the precise wiring up of multiple crystals on demand. Two archetypal organic crystals, i.e., p-type 2,7-diphenyl[1]benzothieno[3,2- b][1]benzothiophene (Dph-BTBT) nanoflakes and n-type N, N'-dioctyl-3,4,9,10-perylenedicarboximide (PTCDI-C8) nanowires, have been exploited as active materials to realize high-performance top-contact organic field-effect transistors (OFETs), inverter and p-n heterojunction photovoltaic devices supported on plastic substrate. The compatibility of our direct photolithography technique with organic molecular crystals is key for exploiting the full potential of organic electronics for sophisticated large-area devices and logic circuitries, thus paving the way toward novel applications in plastic (opto)electronics.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app