Add like
Add dislike
Add to saved papers

Modulation of plantar pressure and gastrocnemius activity during gait using electrical stimulation of the tibialis anterior in healthy adults.

High plantar flexor moment during the stance phase is known to cause high plantar pressure under the forefoot; however, the effects on plantar pressure due to a change of gastrocnemius medialis (GM) activity during gait, have not been investigated to date. Reciprocal inhibition is one of the effects of electrical stimulation (ES), and is the automatic antagonist alpha motor neuron inhibition which is evoked by excitation of the agonist muscle. The aim of this study was to investigate the influences of ES of the tibialis anterior (TA) on plantar pressure and the GM activity during gait in healthy adults. ES was applied to the TAs of twenty healthy male adults for 30 minutes at the level of intensity that causes a full range of dorsiflexion in the ankle (frequency; 50 Hz, on-time; 10 sec, off-time; 10 sec). Subjects walked 10 meters before and after ES, and we measured the peak plantar pressure (PP), pressure time integral (PTI), and gait parameters by using an F-scan system. The percentage of integrated electromyogram (%IEMG), active time, onset time, peak time, and cessation time of TA and GM were calculated. PP and PTI under the forefoot, rear foot, and total plantar surface significantly decreased after the application of ES. Meanwhile, changes of gait parameters were not observed. %IEMG and the active time of both muscles did not change; however, onset time and peak time of GM became significantly delayed. ES application to the TA delayed the timing of onset and peak in the GM, and caused the decrease of plantar pressure during gait. The present results suggest that ES to the TA could become a new method for the control of plantar pressure via modulation of GM activity during gait.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app