Add like
Add dislike
Add to saved papers

Strength and Sprint Time Changes in Response to Repeated Shuttles Between the Wickets During Batting in Cricket.

Christie CJ, Sheppard B, Goble D, Pote L, and Noakes TD. Strength and sprint time changes in response to repeated shuttles between the wickets during batting in cricket. J Strength Cond Res XX(X): 000-000, 2018-No studies have investigated the impact of repeated sprints between the wickets on lower-limb strength and sprint performance. Therefore, the purpose of this study was to assess changes in knee extensor (EXT) and flexor (FLEX) strength after repeated sprints between the wickets and to relate these to changes in sprint times. Twenty batters completed 2 conditions: one was high-volume running (HVR-twelve sprints per over) and the other, moderate-volume running (MVR-6 sprints per over) between the wickets (42 deliveries in both). Peak isokinetic torque was measured before and after each condition and sprint times were recorded. Eccentric and concentric peak torque decreased significantly (p < 0.05) at 1.05 rad·s for knee EXT in both conditions. There was an 18% (HVR) and 10% (MVR) decline in concentric and eccentric knee EXT peak torque. Peak FLEX torques were significantly (p < 0.05) reduced after HVR (16.7%) but not after the MVR condition (8%). There were similar declines in eccentric FLEX peak torque. Sprint times increased significantly (p < 0.05) during the HVR condition but not in the MVR condition; sprint times in the HVR condition were compromised as early as the third over. We conclude that a high volume of runs significantly reduces muscle function in the lower limbs, partly explaining the impairment in sprint performance. However, because batters slowed as early as the third over in the HVR condition, there may be some form of strategy used in anticipation of a higher overall workload. More middle wicket practices, focusing on repeat shuttle sprints while batting, should be included in the coaching program.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app