Add like
Add dislike
Add to saved papers

Improved flower pollination algorithm for identifying essential proteins.

BMC Systems Biology 2018 April 25
BACKGROUND: Essential proteins are necessary for the survival and development of cells. The identification of essential proteins can help to understand the minimal requirements for cellular life and it also plays an important role in the disease genes study and drug design. With the development of high-throughput techniques, a large amount of protein-protein interactions data is available to predict essential proteins at the network level. Hitherto, even though a number of essential protein discovery methods have been proposed, the prediction precision still needs to be improved.

METHODS: In this paper, we propose a new algorithm, improved Flower Pollination algorithm (FPA) for identifying Essential proteins, named FPE. Different from other existing essential protein discovery methods, we apply FPA which is a new intelligent algorithm imitating pollination behavior of flowering plants in nature to identify essential proteins. Analogous to flower pollination is to find optimal reproduction from the perspective of biological evolution, and the identification of essential proteins is to discover a candidate essential protein set by analyzing the corresponding relationships between FPA algorithm and the prediction of essential proteins, and redefining the positions of flowers and specific pollination process. Moreover, it has been proved that the integration of biological and topological properties can get improved precision for identifying essential proteins. Consequently, we develop a GSC measurement in order to judge the essentiality of proteins, which takes into account not only the Gene expression data, Subcellular localization and protein Complexes information, but also the network topology.

RESULTS: The experimental results show that FPE performs better than the state-of-the-art methods (DC, SC, IC, EC, LAC, NC, PeC, WDC, UDoNC and SON) in terms of the prediction precision, precision-recall curve and jackknife curve for identifying essential proteins and also has high stability.

CONCLUSIONS: We confirm that FPE can be used to effectively identify essential proteins by the use of nature-inspired algorithm FPA and the combination of network topology with gene expression data, subcellular localization and protein complexes information. The experimental results have shown the superiority of FPE for the prediction of essential proteins.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app