Add like
Add dislike
Add to saved papers

Aspergillus ochraceopetaliformis SSP13 modulates quorum sensing regulated virulence and biofilm formation in Pseudomonas aeruginosa PAO1.

Biofouling 2018 April
Pseudomonas aeruginosa is an opportunistic nosocomial pathogen causing the majority of acute and persistent infections in human beings. The ability to form biofilm adds a new dimension to its resistance to conventional therapeutic agents. In the present study, down-regulation of quorum sensing regulated virulence and biofilm development resulting from exposure to Aspergillus ochraceopetaliformis SSP13 extract was investigated. The in vitro results inferred impairment in the production of LasA protease, LasB elastase, chitinase, pyocyanin, exopolysaccharides and rhamnolipids. In addition, motility and biofilm formation by P. aeruginosa PAO1 was significantly altered. The in vitro results were further supported by molecular docking studies of the metabolites obtained from GC-MS analysis depicting the quorum sensing attenuation by targeting the receptor proteins LasR and RhlR. The in vitro and in silico studies suggested new avenues for the development of bioactive metabolites from A. ochraceopetaliformis SSP13 extract as potential anti-infective agents.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app