English Abstract
Journal Article
Add like
Add dislike
Add to saved papers

[The design of weight-loss walking rehabilitation training system of differential-pressure style].

This research is to develop a weight-loss walking rehabilitation training system based on differential air pressure. The system adopted Proportion-Integral-Derivative (PID) algorithm to improve the precision of weight loss, taking MSP430F149 microprocessor of Texas Instruments as the core of pressure control system. The training software is designed based on Microsoft Visual C++ 6.0 of Microsoft. The system can provide comfortable training environment for patients with lower limb motor function impediment, and can collect electromyographic signals from patients, so as to further the scientific and normative management of the patient's information. Based on this training system, the initial bearing weight, bearing weight after maximum weight loss, and maximum weight loss percentage of 10 normal adults' lower limbs were collected. It was found that the intraclass correlation coefficient (ICC) values were all greater than 0.6. The training system has a good reliability, which can provide scientific data for clinical weight-loss lower limb rehabilitation training.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app