ENGLISH ABSTRACT
JOURNAL ARTICLE
Add like
Add dislike
Add to saved papers

[Electrical properties tomography based on radio frequency for human breast imaging].

Through magnetic resonance electrical properties tomography (MR-EPT), electrical conductivity and permittivity of biological tissues could be reconstructed based on radio frequency field of magnetic resonance imaging (MRI) system. High precision and high resolution image could be obtained without current injection. In this study, XFDTD software was used to establish a finite element model of the human breast. Simulation was delivered at the Larmor frequency of 128 MHz by a 16-channel radio frequency coil. Conductivity and permittivity of the mammary tissue was reconstructed according to the B 1 + field's amplitude and phase of forward problem. Anti-noise performance of the algorithm was studied by adding noise to B 1 + field. The conductivity and permittivity's average relative error between simulation results and dielectric constant was 4.71% and 11.32%, respectively. With a signal-to-noise ratio of >30 dB, the noise added would not affect imaging results. This study demonstrated that high precision and high resolution image could be obtained by MR-EPT without excitation. MR-EPT had excellent feasibility and developing potential in early detection of diseases.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app