Add like
Add dislike
Add to saved papers

In vivo bone 31 P relaxation times and their implications on mineral quantification.

PURPOSE: The intersubject variations in bone phosphorus-31 (31 P) T1 and T2*, as well as the implications on in vivo 31 P MRI-based bone mineral quantification, were investigated at 3T field strength.

METHODS: A technique that isolates the bone signal from the composite in vivo 31 P spectrum was first evaluated via simulation and experiments ex vivo and subsequently applied to measure the T1 of bone 31 P collectively with a spectroscopic saturation recovery sequence in a group of healthy subjects aged 26 to 76 years. T2* was derived from the bone signal linewidth. The density of bone 31 P was derived for all subjects from 31 P zero TE images acquired in the same scan session using the measured relaxation times. Test-retest experiments were also performed to evaluate repeatability of this in vivo MRI-based bone mineral quantification protocol.

RESULTS: The T1 obtained in vivo using the proposed spectral separation method combined with saturation recovery sequence is 38.4 ± 1.5 s for the subjects studied. Average 31 P density found was 6.40 ± 0.58 mol/L (corresponding to 1072 ± 98 mg/cm3 mineral density), in good agreement with an earlier study in specimens from donors of similar age range. Neither the relaxation times (P = 0.18 for T1 , P = 0.99 for T2*) nor 31 P density (P = 0.55) were found to correlate with subject age. Average coefficients of variation for the repeat study were 1.5%, 2.6%, and 4.4% for bone 31 P T1 , T2*, and density, respectively.

CONCLUSION: Neither 31 P T1 nor T2* varies significantly in healthy adults across a 50-year age range, therefore obviating the need for subject-specific measurements.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app