Add like
Add dislike
Add to saved papers

Efficient Generation of Cynomolgus Monkey Induced Pluripotent Stem Cell-Derived Intestinal Organoids with Pharmacokinetic Functions.

In preclinical studies, the cynomolgus monkey (CM) model is frequently used to predict the pharmacokinetics of drugs in the human small intestine, because of its evolutionary closeness to humans. Intestinal organoids that mimic the intestinal tissue have attracted attention in regenerative medicine and drug development. In this study, we generated intestinal organoids from CM induced pluripotent stem (CMiPS) cells and analyzed their pharmacokinetic functions. CMiPS cells were induced into the hindgut; then, the cells were seeded on microfabricated culture vessel plates to form spheroids. The resulting floating spheroids were differentiated into intestinal organoids in a medium containing small-molecule compounds. The mRNA expression of intestinal markers and pharmacokinetic-related genes was markedly increased in the presence of small-molecule compounds. The organoids possessed a polarized epithelium and contained various cells constituting small intestinal tissues. The intestinal organoids formed functional tight junctions and expressed drug transporter proteins. In addition, in the organoids generated, cytochrome P450 3A8 (CYP3A8) activity was inhibited by the specific inhibitor ketoconazole and was induced by rifampicin. Therefore, in the present work, we successfully generated intestinal organoids, with pharmacokinetic functions, from CMiPS cells using small-molecule compounds.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app