Add like
Add dislike
Add to saved papers

LncRNA MT1JP Suppresses Gastric Cancer Cell Proliferation and Migration Through MT1JP/MiR-214-3p/RUNX3 Axis.

BACKGROUND/AIMS: Emerging evidence points towards an important role of long noncoding RNAs (lncRNAs) in the tumorigenesis and progression of gastric cancer (GC). MT1JP has recently been reported to be differentially expressed and act as a tumor suppressor in different tumors, with its mechanisms not fully understood in GC.

METHODS: RT-qPCR was used to detect the expression of MT1JP, miR-214-3p and RUNX3 in tumor tissues and cell lines of GC. The CCK-8 assay, colony formation, Transwell assay and wound healing assay were used to evaluate the proliferation, invasion and migration of GC cells, respectively. Bioinformatics analysis and luciferase reporter assay were performed to disclose the interaction between MT1JP, miR-214-3p and RUNX3. Western blot and immunofluorescence were applied to assess the downstream signaling of RUNX3.

RESULTS: MT1JP was found downregulated in GC tissues and cells. Low expression of MT1JP was significantly correlated with advanced TNM stage and lymphatic metastasis. The expression of plasma MT1JP was also found decreased in GC patients compared to healthy controls, with an area under the ROC curve (AUC) of 0.649 for diagnosis of GC. Gain- and loss-of-function of MT1JP revealed that MT1JP functioned as a ceRNA for miR-214-3p to facilitate RUNX3 expression and then upregulated p21 and Bim levels suppressing GC cell proliferation, invasion and migration, and promoting apoptosis. Furthermore, MT1JP overexpression suppressed tumor growth and inhibited the expression of miR-214-3p and proliferation antigen Ki-67, but increased the expression of RUNX3, p21 and Bim in vivo.

CONCLUSIONS: Our results suggest a potential ceRNA regulatory network involving MT1JP regulates RUNX3 expression by competitively binding endogenous miR-214-3p in tumorigenesis and progression of GC. This mechanism may contribute to a better understanding of GC pathogenesis and provide potential therapeutic strategy for GC.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app