Add like
Add dislike
Add to saved papers

Decellularized Pancreas Matrix Scaffolds for Tissue Engineering Using Ductal or Arterial Catheterization.

INTRODUCTION: Diabetes is known as a worldwide disease with a great burden on society. Since therapeutic options cover a limited number of target points, new therapeutic strategies in the field of regenerative medicine are considered. Bioscaffolds along with islet cells would provide bioengineered tissue as a substitute for β-cells. The perfusion-decellularization technique is considered to create such scaffolds since they mimic the compositional, architectural, and biomechanical nature of a native organ. In this study, we investigated 2 decellularization methods preserving tissue microarchitecture.

METHODS: Procured pancreas from Sprague-Dawley rats was exposed to different percentages of detergent for 2, 4, and 6 h after cannulation via the common bile duct or aorta.

RESULTS: High concentrations of sodium dodecyl sulfate (SDS), i.e., > 0.05%, resulted in tissue disruption or incomplete cell removal depending on the duration of exposure. In both methods, 6-h exposure to 0.05% SDS created a bioscaffold with intact extracellular matrices and proper biomechanical characteristics. Tissue-specific stainings revealed that elastic, reticular, and collagen fiber concentrations were well preserved. Quantitative findings showed that glycosaminoglycan content was slightly different, but hydroxyproline was in the range of native pancreas tissue. Dye infusion through ductal and vascular cannulation proved that the vascular network was intact, and scanning electron microscopy indicated a homogeneous porous structure.

CONCLUSIONS: Using the detergent-based method, an effective and time-efficient procedure, a whole pancreas extracellular matrix bioscaffold can be developed that can be used as a 3D structure for pancreas tissue engineering-based studies and regenerative medicine applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app