Add like
Add dislike
Add to saved papers

Optimal Design of a Soft Robotic Gripper for Grasping Unknown Objects.

Soft Robotics 2018 August
This study presents the design of an underactuated, two-finger, motor-driven compliant gripper for grasping size-varied unknown objects. The gripper module consists of one main frame structure and two identical compliant fingers. The compliant finger is a monolithic compliant mechanism synthesized using a topology optimization method, and then prototyped by 3D printing using flexible filament. The input port for each finger is mounted on a moving platform driven by a gear motor, whereas the fixed port of the finger is mounted on a fixed platform. Each compliant finger can be actuated through the linear motion of the moving platform, and can deform elastically to generate the grasping motion. To demonstrate the effectiveness of the proposed design, the gripper module is mounted on a six-axis robotic arm to pick and place a variety of objects. The results show that objects with the sizes between 42 and 141 mm can be grasped by the developed soft robotic gripper. The maximum payload for the gripper is 2.1 kg. The proposed compliant gripper is a low-cost design that can be used in grasping of size-varied vulnerable objects.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app