Add like
Add dislike
Add to saved papers

Stereoselective Metabolism of Omeprazole by Cytochrome P450 2C19 and 3A4: Mechanistic Insights from DFT Study.

The efficacy of S-omeprazole as a proton pump inhibitor compared with that of its enantiomer R-omeprazole is studied using density functional theoretical calculations. The pharmacokinetic studies suggest that the efficacy of S-omeprazole presumably depends on metabolic pathway and excretion from the human body. The density functional theory calculations at SMDwater -B3LYP-D3/6-311+G(d,p)/LANL2DZ//B3LYP/6-31G(d)/LANL2DZ with triradicaloid model active species, [Por•+ FeIV (SH)O], of CYP2C19 enzyme with high-spin quartet and low-spin doublet states demonstrate C-H bond activation mechanism through a two-state rebound process for the hydroxylation of R-omeprazole and S-omeprazole. The calculated activation free energy barriers for the hydrogen abstraction are 15.7 and 17.5 kcal/mol for R-omeprazole and S-omeprazole, respectively. The hydroxylation of R-omeprazole and S-omeprazole is thermodynamically favored; however, the hydroxylated intermediate of S-omeprazole further disintegrates to metabolite 5- O-desmethylomeprazole with a higher kinetic barrier. We have examined the sulfoxidation of S-omeprazole to omeprazole sulfone metabolite by CYP3A4, and the observed activation free energy barrier is 9.9 kcal/mol. The computational results reveal that CYP2C19 exclusively metabolizes R-omeprazole to hydroxyomeprazole, which is hydrophilic and can easily excrete, whereas CYP3A4 metabolizes S-omeprazole to lipophilic sulfone; hence, the excretion of this metabolite would be relatively slower from the body. The spin density analysis and molecular orbital analysis performed using biorthogonalization calculations indicate that R-omeprazole favors high-spin pathway for metabolism process whereas S-omeprazole prefers the low-spin pathway.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app