Add like
Add dislike
Add to saved papers

Quantitative Proteomics Study Reveals Changes in the Molecular Landscape of Human Embryonic Stem Cells with Impaired Stem Cell Differentiation upon Exposure to Titanium Dioxide Nanoparticles.

Small 2018 June
The increasing number of nanoparticles (NPs) being used in various industries has led to growing concerns of potential hazards that NP exposure can incur on human health. However, its global effects on humans and the underlying mechanisms are not systemically studied. Human embryonic stem cells (hESCs), with the ability to differentiate to any cell types, provide a unique system to assess cellular, developmental, and functional toxicity in vitro within a single system highly relevant to human physiology. Here, the quantitative proteomics approach is adopted to evaluate the molecular consequences of titanium dioxide NPs (TiO2 NPs) exposure in hESCs. The study identifies ≈328 unique proteins significantly affected by TiO2 NPs exposure. Proteomics analysis highlights that TiO2 NPs can induce DNA damage, elevated oxidative stress, apoptotic responses, and cellular differentiation. Furthermore, in vivo analysis demonstrates remarkable reduction in the ability of hESCs in teratoma formation after TiO2 NPs exposure, suggesting impaired pluripotency. Subsequently, it is found that TiO2 NPs can disrupt hESC mesoderm differentiation into cardiomyocytes. The study unveils comprehensive changes in the molecular landscape of hESCs by TiO2 NPs and identifies the impact which TiO2 NPs can have on the pluripotency and differentiation properties of human stem cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app