Add like
Add dislike
Add to saved papers

Peptidome analysis of lung tissues from a hyperoxia-induced bronchopulmonary dysplasia mouse model: Insights into the pathophysiological process of bronchopulmonary dysplasia.

The aim of this study was to identify and compare the peptidomic profiles of lung tissues from neonatal mice with and without bronchopulmonary dysplasia (BPD). Hyperoxia was used to establish the BPD mouse model. Lung tissues obtained on postnatal day (PND) 9 were processed for analysis via histological staining and label-free liquid chromatography-mass spectrometry (LC-MS/MS). Histological analysis of the lung sections from the BPD group showed significant alveolar simplification and aberrant pulmonary vascularization. We identified 3,704 total peptides, of which 63 were differentially expressed in the lung tissues from the BPD group compared with those from the control group. Within this subset, 31 peptides were downregulated, and 32 peptides were upregulated. Bioinformatics analysis suggested several potential roles of the differentially expressed peptides in the pathophysiological process of BPD. In summary, this study highlights novel peptide candidates, and provides new insights for further understanding the molecular mechanism of BPD development.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app