Add like
Add dislike
Add to saved papers

Essential role of connective tissue growth factor (CTGF) in transforming growth factor-β1 (TGF-β1)-induced myofibroblast transdifferentiation from Graves' orbital fibroblasts.

Connective tissue growth factor (CTGF) associated with transforming growth factor-β (TGF-β) play a pivotal role in the pathophysiology of many fibrotic disorders. However, it is not clear whether this interaction also takes place in GO. In this study, we investigated the role of CTGF in TGF-β-induced extracellular matrix production and myofibroblast transdifferentiation in Graves' orbital fibroblasts. By Western blot analysis, we demonstrated that TGF-β1 induced the expression of CTGF, fibronectin, and alpha-smooth muscle actin (α-SMA) in Graves' orbital fibroblasts. In addition, the protein levels of fibronectin and α-SMA in Graves' orbital fibroblasts were also increased after treatment with a recombinant human protein CTGF (rhCTGF). Moreover, we transfected the orbital fibroblasts with a small hairpin RNA of CTGF gene (shCTGF) to knockdown the expression levels of CTGF, which showed that knockdown of CTGF significantly diminished TGF-β1-induced expression of CTGF, fibronectin and α-SMA proteins in Graves' orbital fibroblasts. Furthermore, the addition of rhCTGF to the shCTGF-transfected orbital fibroblasts could restore TGF-β1-induced expression of fibronectin and α-SMA proteins. Our findings demonstrate that CTGF is an essential downstream mediator for TGF-β1-induced extracellular matrix production and myofibroblast transdifferentiation in Graves' orbital fibroblasts and thus may provide with a potential therapeutic target for treatment of GO.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app