Add like
Add dislike
Add to saved papers

Novel Xanthomonas campestris Long-Chain-Specific 3-Oxoacyl-Acyl Carrier Protein Reductase Involved in Diffusible Signal Factor Synthesis.

MBio 2018 May 9
The precursors of the diffusible signal factor (DSF) family signals of Xanthomonas campestris pv. campestris are 3-hydroxyacyl-acyl carrier protein (3-hydroxyacyl-ACP) thioesters having acyl chains of 12 to 13 carbon atoms produced by the fatty acid biosynthetic pathway. We report a novel 3-oxoacyl-ACP reductase encoded by the X. campestris pv. campestris XCC0416 gene ( fabG2 ), which is unable to participate in the initial steps of fatty acyl synthesis. This was shown by the failure of FabG2 expression to allow growth at the nonpermissive temperature of an Escherichia coli fabG temperature-sensitive strain. However, when transformed into the E. coli strain together with a plasmid bearing the Vibrio harveyi acyl-ACP synthetase gene ( aasS ), growth proceeded, but only when the medium contained octanoic acid. In vitro assays showed that FabG2 catalyzes the reduction of long-chain (≥C8 ) 3-oxoacyl-ACPs to 3-hydroxyacyl-ACPs but is only weakly active with shorter-chain (C4 , C6 ) substrates. FabG1, the housekeeping 3-oxoacyl-ACP reductase encoded within the fatty acid synthesis gene cluster, could be deleted in a strain that overexpressed fabG2 but only in octanoic acid-supplemented media. Growth of the X. campestris pv. campestris Δ fabG1 strain overexpressing fabG2 required fabH for growth with octanoic acid, indicating that octanoyl coenzyme A is elongated by X. campestris pv. campestris fabH Deletion of fabG2 reduced DSF family signal production, whereas overproduction of either FabG1 or FabG2 in the Δ fabG2 strain restored DSF family signal levels. IMPORTANCE Quorum sensing mediated by DSF signaling molecules regulates pathogenesis in several different phytopathogenic bacteria, including Xanthomonas campestris pv. campestris DSF signaling also plays a key role in infection by the human pathogen Burkholderia cepacia The acyl chains of the DSF molecules are diverted and remodeled from a key intermediate of the fatty acid synthesis pathway. We report a Xanthomonas campestris pv. campestris fatty acid synthesis enzyme, FabG2, of novel specificity that seems tailored to provide DSF signaling molecule precursors.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app