Add like
Add dislike
Add to saved papers

Effect of the main process parameters on the mechanical strength of polyphenylsulfone (PPSU) in ultrasonic micro-moulding process.

Ultrasonic micro-moulding technology was used to process high performance polymer polyphenylsulfone (PPSU) due to investigate mechanical and chemical characteristics of manufacturing parts. Both the processing window and dependence between the main input parameters, in this case amplitude, plunger velocity and ultrasonic exposure time and their influence on the mechanical properties were appointed. The experiments showed that each available amplitude level (58 µm, 52.2 µm, 46.4 µm, 40.6 µm) are suitable to produce specimens characterised by high mechanical strength but only when combined with the appropriate values of the rest of the parameters. The parameter, which influenced the most on the part degradation is the ultrasonic vibration time. Samples from the combination of parameters, where the amplitude and velocity had the highest value but time of sonication is one of the lowest are less exposed for degradation. Cavitation bubbles makes polymer falling apart which decreases mechanical strength of the manufacturing parts. Degradation was observed via FTIR analysis even if it was not visually visible. Finally, the model as a tool for selecting the appropriate values for the input process parameters when using the novel ultrasonic micro-moulding technology required to produce PPSU parts characterised by their high mechanical strength was developed.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app